Shear deformable beams and plates : relationships with classical solutions /

Most books on the theory and analysis of beams and plates deal with the classical (Euler-Bernoulli/Kirchoff) theories but few include shear deformation theories in detail. The classical beam/plate theory is not adequate in providing accurate bending, buckling, and vibration results when the thicknes...

Full description

Saved in:
Bibliographic Details
Main Author: Wang, C. M.
Other Authors: Reddy, J. N. (Junuthula Narasimha), 1945-, Lee, K. H.
Format: Electronic eBook
Language:English
Published: Amsterdam ; New York : Elsevier, 2000.
Subjects:
Online Access: Full text (Emmanuel users only)

MARC

LEADER 00000cam a2200000 a 4500
001 in00000361345
006 m o d
007 cr cn|||||||||
008 000321s2000 ne a ob 001 0 eng d
005 20240703202855.8
016 7 |a 000021416681  |2 AU 
019 |a 162566479  |a 180765961  |a 441814967  |a 469636067  |a 476108968  |a 488730671  |a 507548270  |a 559150616  |a 646716293  |a 722186043  |a 728007367  |a 815534158  |a 823110163  |a 888589970  |a 961570849  |a 962635063  |a 966194853  |a 988507766  |a 991987576  |a 1035652438  |a 1037797092  |a 1038660069  |a 1045495780  |a 1055356908  |a 1057970774  |a 1058583080  |a 1081234212  |a 1086958914  |a 1153459250  |a 1228566120  |a 1340055768 
020 |a 9780080541150  |q (electronic bk.) 
020 |a 0080541151  |q (electronic bk.) 
020 |a 9780080437842 
020 |a 0080437842 
020 |a 1281072206 
020 |a 9781281072207 
020 |z 0080437842  |q (hardcover) 
024 8 |a (WaSeSS)ssj0000245350 
035 |a (OCoLC)56117561  |z (OCoLC)162566479  |z (OCoLC)180765961  |z (OCoLC)441814967  |z (OCoLC)469636067  |z (OCoLC)476108968  |z (OCoLC)488730671  |z (OCoLC)507548270  |z (OCoLC)559150616  |z (OCoLC)646716293  |z (OCoLC)722186043  |z (OCoLC)728007367  |z (OCoLC)815534158  |z (OCoLC)823110163  |z (OCoLC)888589970  |z (OCoLC)961570849  |z (OCoLC)962635063  |z (OCoLC)966194853  |z (OCoLC)988507766  |z (OCoLC)991987576  |z (OCoLC)1035652438  |z (OCoLC)1037797092  |z (OCoLC)1038660069  |z (OCoLC)1045495780  |z (OCoLC)1055356908  |z (OCoLC)1057970774  |z (OCoLC)1058583080  |z (OCoLC)1081234212  |z (OCoLC)1086958914  |z (OCoLC)1153459250  |z (OCoLC)1228566120  |z (OCoLC)1340055768 
037 |a 121154:127920  |b Elsevier Science & Technology  |n http://www.sciencedirect.com 
040 |a CSL  |b eng  |e pn  |c CSL  |d OCLCQ  |d OCLCG  |d CO3  |d OCLCQ  |d N$T  |d YDXCP  |d MERUC  |d DKDLA  |d CCO  |d E7B  |d IDEBK  |d OCLCQ  |d DEBBG  |d OCLCQ  |d OPELS  |d FVL  |d OCLCQ  |d OCLCA  |d OCLCF  |d OCLCQ  |d EBLCP  |d OCLCQ  |d ZCU  |d UKDOC  |d AZK  |d JBG  |d LOA  |d AGLDB  |d MOR  |d PIFBR  |d OCLCQ  |d U3W  |d STF  |d WRM  |d D6H  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d NLE  |d INT  |d VT2  |d OCLCQ  |d AU@  |d WYU  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d M8D  |d UKCRE  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d COA  |d OCLCO  |d OCLCL  |d SXB 
050 4 |a TA660.P6  |b W27 2000eb 
072 7 |a TEC  |x 063000  |2 bisacsh 
072 7 |a TA  |2 lcco 
072 7 |a TGMD5  |2 bicssc 
082 0 4 |a 624.1/7765  |2 21 
084 |a SE 55  |2 blsrissc 
100 1 |a Wang, C. M. 
245 1 0 |a Shear deformable beams and plates :  |b relationships with classical solutions /  |c C.M. Wang, J.N. Reddy, K.H. Lee. 
260 |a Amsterdam ;  |a New York :  |b Elsevier,  |c 2000. 
300 |a 1 online resource (xiv, 296 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references (pages 279-291) and index. 
505 0 |a Cover -- Contents -- Preface -- Chapter 1. Introduction -- 1.1 Preliminary Comments -- 1.2 An Overview of Plate Theories -- 1.3 Present Study -- Problems -- Part 1: Beams -- Chapter 2. Bending of Beams -- 2.1 Beam Theories -- 2.2 Relationships Between EBT and TBT -- 2.3 Relationships Between EBT and RBT -- 2.4 Examples -- 2.5 Summary -- Problems -- Chapter 3. Shear -- Flexural Stiffness Matrix -- 3.1 Introduction -- 3.2 Summary of Relationships -- 3.3 Stiffness Matrix -- 3.4 Frame Structure -- An Example -- 3.5 Concluding Remarks -- Problems -- Chapter 4. Buckling of Columns -- 4.1 Introduction -- 4.2 Relationship Between Euler-Bernoulli -- 4.3 Relationship Between Euler-Bernoulli and Reddy-Bickford Columns -- 4.4 Concluding Remarks -- Problems -- Chapter 5. Tapered Beams -- 5.1 Introduction -- 5.2 Stress Resultant- Displacement Relations -- 5.3 Equilibrium Equations -- 5.4 Deflection and Force Relationships -- 5.5 Symmetrically Laminated Beams -- 5.6 Concluding Remarks -- Problems -- Part 2: Plates -- Chapter 6. Theories of Plate Bending -- 6.1 Overview of Plate Theories -- 6.2 Classical (Kirchhoff) Plate Theory (CPT) -- 6.3 First-Order Shear Deformation Plate Theory (FSDT) -- 6.4 Third-Order Shear Deformation Plate Theory (TSDT) -- Problems -- Chapter 7. Bending Relationships for Simply Supported Plates -- 7.1 Introduction -- 7.2 Relationships Between CPT and FSDT -- 7.3 Examples -- 7.4 Relationships Between CPT and TSDT -- 7.5 Closure -- Problems -- Chapter 8. Bending Relationships for Lévy Solutions -- 8.1 Introduction -- 8.2 Governing Equations -- 8.3 Bending Relationships -- 8.4 Numerical Results -- Problems -- Chapter 9. Bending Relationships for Circular and Annular Plates -- 9.1 Governing Equations -- 9.2 Relationships Between CPT and FSDT -- 9.3 Relationships Between CPT and TSDT -- 9.4 Closure -- Problems -- Chapter 10. Bending Relationships for Sectorial Plates -- 10.1 Introduction -- 10.2 Formulation -- 10.3 Exact Bending Relationships -- 10.4 Examples -- 10.5 Conclusions -- Problems -- Chapter 11. Buckling Relationships -- 11.1 Polygonal Plates -- 11.2 Circular Plates -- 11.3 Sectorial Mindlin Plates -- Problems -- Chapter 12. Free Vibration Relationships -- 12.1 Introduction -- 12.2 Relationships Between CPT and FSDT -- 12.3 Relationships Between CPT and TSDT -- 12.4 Concluding Remarks -- Problems -- Chapter 13. Relationships for Inhomogeneous Plates -- 13.1 Deflection Relationships for Sandwich Plates -- 13.2 Deflection Relationships for Functionally Graded Circular Plates -- 13.3 Buckling Load Relationships for Sandwich Mindlin Plates -- 13.4 Free Vibration Relationships for Sandwich Plates -- 13.5 Summary -- References -- Subject Index -- Last Page. 
520 |a Most books on the theory and analysis of beams and plates deal with the classical (Euler-Bernoulli/Kirchoff) theories but few include shear deformation theories in detail. The classical beam/plate theory is not adequate in providing accurate bending, buckling, and vibration results when the thickness-to-length ratio of the beam/plate is relatively large. This is because the effect of transverse shear strains, neglected in the classical theory, becomes significant in deep beams and thick plates. This book illustrates how shear deformation theories provide accurate solutions compared to the clas. 
588 0 |a Print version record. 
650 0 |a Plates (Engineering)  |x Mathematical models. 
650 0 |a Girders  |x Mathematical models. 
650 0 |a Shear (Mechanics) 
650 0 |a Deformations (Mechanics) 
650 0 |a Mathematical analysis. 
700 1 |a Reddy, J. N.  |q (Junuthula Narasimha),  |d 1945-  |1 https://id.oclc.org/worldcat/entity/E39PBJdrF6bjpHkVyBHfQHB3wC 
700 1 |a Lee, K. H. 
776 0 8 |i Print version:  |a Wang, C.M.  |t Shear deformable beams and plates.  |d Amsterdam ; New York : Elsevier, 2000  |w (DLC) 00035437 
852 |b Online  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/emmanuel/detail.action?docID=316940  |z Full text (Emmanuel users only)  |t 0 
936 |a BATCHLOAD 
938 |a 123Library  |b 123L  |n 39569 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4053475 
938 |a ebrary  |b EBRY  |n ebr10041466 
938 |a EBSCOhost  |b EBSC  |n 210026 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 107220 
938 |a YBP Library Services  |b YANK  |n 2729901 
947 |a FLO  |x pq-ebc-base 
999 f f |s 2ae79abb-7701-472a-8965-10f291e348d1  |i 9c5650a2-5fc5-4881-b84f-5b9bcb457ac8  |t 0 
952 f f |a Emmanuel College  |b Main Campus  |c Emmanuel College Library  |d Online  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/emmanuel/detail.action?docID=316940  |y Full text (Emmanuel users only)