Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces /

This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted Lp classes. We establish: (1) Mapping properties for the double and single layer potential...

Full description

Saved in:
Bibliographic Details
Main Authors: Barton, Ariel, 1982- (Author), Mayboroda, Svitlana, 1981- (Author)
Format: Electronic eBook
Language:English
Published: Providence, Rhode Island : American Mathematical Society, 2016.
Series:Memoirs of the American Mathematical Society ; no. 1149.
Subjects:
Online Access: Full text (Emmanuel users only)

MARC

LEADER 00000cam a2200000 i 4500
001 in00000225509
006 m o d
007 cr |||||||||||
008 160811t20162016riua ob 000 0 eng
005 20240703144935.8
010 |a  2016037190 
019 |a 1262674070 
020 |a 9781470434465  |q (online) 
020 |a 1470434466  |q (online) 
020 |z 9781470419899  |q (print) 
020 |z 1470419890  |q (print) 
035 |a (OCoLC)952103132  |z (OCoLC)1262674070 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d GZM  |d BTCTA  |d UIU  |d OCLCF  |d OCLCO  |d OCL  |d GZM  |d OCLCA  |d YDX  |d EBLCP  |d IDB  |d OCLCQ  |d LEAUB  |d OCLCQ  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB 
042 |a pcc 
050 1 0 |a QA379 
082 0 0 |a 515/.35  |2 23 
100 1 |a Barton, Ariel,  |d 1982-  |e author. 
245 1 0 |a Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces /  |c Ariel Barton, Svitlana Mayboroda. 
246 1 |i Title from HTML article page:  |a Layer potentials and boundary-value problems for second order ellipti operators with data in Besov spaces 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
264 4 |c ©2016 
300 |a 1 online resource (v, 110 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 243, number 1149 
500 |a "Volume 243, number 1149 (second of 4 numbers), September 2016." 
504 |a Includes bibliographical references (pages 105-110). 
505 0 |a Introduction. History of the problem: Lp setting ; The nature of the problem and our main results ; Outline of the monograph ; Acknowledgements -- Definitions. Function spaces ; Elliptic equations ; Layer potentials ; Boundary-value problems -- The main theorems. Sharpness of these results -- Interpolation, function spaces and elliptic equations. Interpolation functors ; Function spaces ; Solutions to elliptic equations -- Boundedness of integral operators. Boundedness of the Newton potential ; Boundedness of the double and single layer potentials -- Trace theorems -- Results for Lebesgue and Sobolev spaces: historic account and some extensions -- The Green's Formula representation for a solution -- Invertibility of layer potentials and well-posedness of boundary-value problems. Invertibility and well-posedness: theorems 3.16, 3.17 and 3.18 ; Invertibility and functional analysis: corollaries 3.19, 3.20, and 3.21 ; Extrapolation of well-posedness and real coefficients: corollaries 3.23 and 3.24 -- Besov spaces and weighted Sobolev spaces -- Bibliography. 
520 |a This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted Lp classes. We establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given Lp space automatically assures their solvability in an extended range of Besov spaces; (3) Well-posedness for the non-homogeneous boundary value problems. In particular, we prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric coefficients. 
588 0 |a Online resource; title from PDF title page (viewed June 23, 2016). 
650 0 |a Boundary value problems. 
650 0 |a Elliptic operators. 
650 0 |a Besov spaces. 
700 1 |a Mayboroda, Svitlana,  |d 1981-  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGK9JB9CQkPfyBp7dq7pMX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Barton, Ariel, 1982-  |t Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces.  |d Providence, Rhode Island : American Mathematical Society, 2016  |z 9781470419899  |w (DLC) 2016030522 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1149. 
852 |b Online  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/emmanuel/detail.action?docID=4901868  |z Full text (Emmanuel users only)  |t 0 
938 |a Baker and Taylor  |b BTCP  |n BK0019013290 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4901868 
938 |a YBP Library Services  |b YANK  |n 14681451 
947 |a FLO  |x pq-ebc-base 
999 f f |s 62df060c-4262-4899-9797-e39681635b6c  |i 438fcdee-76fc-4fc7-a995-7d81e2947aeb  |t 0 
952 f f |a Emmanuel College  |b Main Campus  |c Emmanuel College Library  |d Online  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/emmanuel/detail.action?docID=4901868  |y Full text (Emmanuel users only)