Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes : Numerical Solutions /

Most of the equations governing the problems related to science and engineering are nonlinear in nature. As a result, they are inherently difficult to solve. Analytical solutions are available only for some special cases. For other cases, one has no easy means but to solve the problem must depend on...

Full description

Saved in:
Bibliographic Details
Main Authors: Vajravelu, Kuppalapalle (Author), Mukhopadhyay, Swati (Author)
Format: Electronic eBook
Language:English
Published: London : Academic Press, [2016]
Subjects:
Online Access: Full text (Emmanuel users only)

MARC

LEADER 00000cam a2200000 i 4500
001 in00000191020
006 m o d
007 cr cnu|||unuuu
008 150910s2016 enk ob 001 0 eng d
005 20240702214426.0
019 |a 921216949  |a 1162232966  |a 1227643581  |a 1229863421  |a 1287177888  |a 1290116767 
020 |a 9780128037850  |q (electronic bk.) 
020 |a 0128037857  |q (electronic bk.) 
020 |a 0128037334 
020 |a 9780128037331 
020 |z 9780128037331 
035 |a (OCoLC)920673618  |z (OCoLC)921216949  |z (OCoLC)1162232966  |z (OCoLC)1227643581  |z (OCoLC)1229863421  |z (OCoLC)1287177888  |z (OCoLC)1290116767 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d YDXCP  |d CDX  |d OPELS  |d OCLCF  |d DEBSZ  |d EBLCP  |d NLE  |d DEBBG  |d IDB  |d VGM  |d OCLCQ  |d U3W  |d D6H  |d CEF  |d OCLCQ  |d TKN  |d LOA  |d ZCU  |d MERUC  |d ICG  |d COCUF  |d VT2  |d DKC  |d OCLCQ  |d S2H  |d OCLCO  |d HS0  |d LVT  |d AAA  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB 
050 4 |a QA901 
072 7 |a TEC  |x 014000  |2 bisacsh 
082 0 4 |a 532  |2 23 
100 1 |a Vajravelu, Kuppalapalle,  |e author. 
245 1 0 |a Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes :  |b Numerical Solutions /  |c Kuppalapalle Vajravelu and Swati Mukhopadhyay. 
264 1 |a London :  |b Academic Press,  |c [2016] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and indexes. 
505 0 |a pt. I Methods and Applications -- 1. Numerical methods -- References -- 2. Flow past a stretching sheet -- 2.1. Flow past a linearly stretching sheet -- 2.2. Flow past a nonlinearly stretching sheet -- 2.3. Flow past an exponentially stretching sheet -- 2.4. Flow past an unsteady stretching sheet -- 2.5. Flow past a curved stretching sheet -- 2.6. Stagnation point flow of a non-newtonian fluid over a stretching sheet -- References -- 3. Flow past a shrinking sheet -- 3.1. Flow past a linearly shrinking sheet -- 3.2. Flow past a nonlinearly shrinking sheet -- 3.3. Flow past an exponentially shrinking sheet -- 3.4. Flow past an unsteady shrinking sheet -- 3.5. Flow past a curved shrinking sheet -- 3.6. Stagnation-point flow over a shrinking sheet -- References -- 4. Flow past a flat plate -- 4.1. Flow past a static horizontal plate -- 4.2. Flow past a moving horizontal plate -- 4.3. Flow past a static vertical plate -- 4.4. Flow past a moving vertical plate -- 4.5. Nanofluid boundary layers over a moving plate -- 4.6. Unsteady boundary-layer flow caused by an impulsively stretching plate -- References -- pt. II Further Applications -- 5. Flow past a cylinder -- 5.1. Flow past a stretching cylinder -- 5.2. Flow past a vertical cylinder -- 5.3. Nanofluid boundary layer over a stretching cylinder -- References -- 6. Flow past a sphere -- 6.1. Introduction and physical motivation -- 6.2. Basic equations -- 6.3. Solution procedure -- 6.4. Analysis of the result -- 6.5. Conclusions -- References -- 7. Flow past a wedge -- 7.1. Forced convection flow past a static wedge -- 7.2. Forced convection flow past a moving wedge -- 7.3. Mixed convection flow past a symmetric static/moving wedge -- 7.4. Non-newtonian fluid flow over a symmetric wedge -- References. 
520 |a Most of the equations governing the problems related to science and engineering are nonlinear in nature. As a result, they are inherently difficult to solve. Analytical solutions are available only for some special cases. For other cases, one has no easy means but to solve the problem must depend on numerical solutions. Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes: Numerical Solutions presents the current theoretical developments of boundary layer theory, a branch of transport phenomena. Also, the book addresses the theoretical developments in the area and presents a number of physical problems that have been solved by analytical or numerical method. It is focused particularly on fluid flow problems governed by nonlinear differential equations. The book is intended for researchers in applied mathematics, physics, mechanics and engineering. 
588 0 |a Vendor-supplied metadata. 
650 0 |a Fluid mechanics  |x Mathematical models. 
700 1 |a Mukhopadhyay, Swati,  |e author. 
758 |i has work:  |a Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFwtTKJkytByMv3bQChgDq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Erscheint auch als:  |n Druck-Ausgabe  |a Vajravelu, Kuppalapalle. Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes .  |t Numerical Solutions 
852 |b Online  |h ProQuest 
856 4 0 |u https://ebookcentral.proquest.com/lib/emmanuel/detail.action?docID=4003591  |z Full text (Emmanuel users only)  |t 0 
938 |a Coutts Information Services  |b COUT  |n 32604579 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4003591 
938 |a EBSCOhost  |b EBSC  |n 1061584 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis32604579 
938 |a YBP Library Services  |b YANK  |n 12601853 
947 |a FLO  |x pq-ebc-base 
999 f f |s d311568c-9717-40ec-8aa0-16b833d1a8a3  |i 610dd575-44bc-493b-a772-94c37dbbf601  |t 0 
952 f f |a Emmanuel College  |b Main Campus  |c Emmanuel College Library  |d Online  |t 0  |e ProQuest  |h Other scheme 
856 4 0 |t 0  |u https://ebookcentral.proquest.com/lib/emmanuel/detail.action?docID=4003591  |y Full text (Emmanuel users only)