Stein's method and applications /

Stein's startling technique for deriving probability approximations first appeared about 30 years ago. Since then, much has been done to refine and develop the method, but it is still a highly active field of research, with many outstanding problems, both theoretical and in applications. This v...

Full description

Saved in:
Bibliographic Details
Corporate Author: National University of Singapore. Institute for Mathematical Sciences
Other Authors: Stein, Charles, 1920-2016, Barbour, A. D., Chen, Louis H. Y. (Louis Hsiao Yun), 1940-
Format: Electronic eBook
Language:English
Published: Singapore : New Jersey ; Hong Kong : Singapore University Press ; World Scientific, ©2005.
Series:Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ; v. 5.
Subjects:
Online Access: Full text (Emmanuel users only)
Table of Contents:
  • FOREWORD; PREFACE; Zero biasing in one and higher dimensions, and applications; Poisson limit theorems for the appearances of attributes; Normal approximation in geometric probability; Stein's method, Edgeworth's expansions and a formula of Barbour; Stein's method for compound Poisson approximation via immigration-death processes; The central limit theorem for the independence number for minimal spanning trees in the unit square; Stein's method, Markov renewal point processes, and strong memoryless times; Multivariate Poisson-binomial approximation using Stein's method.